207 research outputs found

    Tensor model and dynamical generation of commutative nonassociative fuzzy spaces

    Get PDF
    Rank-three tensor model may be regarded as theory of dynamical fuzzy spaces, because a fuzzy space is defined by a three-index coefficient of the product between functions on it, f_a*f_b=C_ab^cf_c. In this paper, this previous proposal is applied to dynamical generation of commutative nonassociative fuzzy spaces. It is numerically shown that fuzzy flat torus and fuzzy spheres of various dimensions are classical solutions of the rank-three tensor model. Since these solutions are obtained for the same coupling constants of the tensor model, the cosmological constant and the dimensions are not fundamental but can be regarded as dynamical quantities. The symmetry of the model under the general linear transformation can be identified with a fuzzy analog of the general coordinate transformation symmetry in general relativity. This symmetry of the tensor model is broken at the classical solutions. This feature may make the model to be a concrete finite setting for applying the old idea of obtaining gravity as Nambu-Goldstone fields of the spontaneous breaking of the local translational symmetry.Comment: Adding discussions on effective geometry, a note added, four references added, other minor changes, 27 pages, 17 figure

    A Note on String Field Theory in the Temporal Gauge

    Full text link
    In this note, we review the recent developments in the string field theory in the temporal gauge. (Based on a talk presented by N.I. in the workshop {\it Quantum Field Theory, Integrable Models and Beyond}, Yukawa Institute for Theoretical Physics, Kyoto University, 14-18 February 1994.)Comment: 20 pages, KEK-TH-411, LaTex fil

    Field theory on evolving fuzzy two-sphere

    Full text link
    I construct field theory on an evolving fuzzy two-sphere, which is based on the idea of evolving non-commutative worlds of the previous paper. The equations of motion are similar to the one that can be obtained by dropping the time-derivative term of the equation derived some time ago by Banks, Peskin and Susskind for pure-into-mixed-state evolutions. The equations do not contain an explicit time, and therefore follow the spirit of the Wheeler-de Witt equation. The basic properties of field theory such as action, gauge invariance and charge and momentum conservation are studied. The continuum limit of the scalar field theory shows that the background geometry of the corresponding continuum theory is given by ds^2 = -dt^2+ t d Omega^2, which saturates locally the cosmic holographic principle.Comment: Typos corrected, minor changes, 23 pages, no figures, LaTe

    An invariant approach to dynamical fuzzy spaces with a three-index variable

    Full text link
    A dynamical fuzzy space might be described by a three-index variable C_{ab}^c, which determines the algebraic relations f_a f_b =C_{ab}^c f_c among the functions f_a on the fuzzy space. A fuzzy analogue of the general coordinate transformation would be given by the general linear transformation on f_a. I study equations for the three-index variable invariant under the general linear transformation, and show that the solutions can be generally constructed from the invariant tensors of Lie groups. As specific examples, I study SO(3) symmetric solutions, and discuss the construction of a scalar field theory on a fuzzy two-sphere within this framework.Comment: Typos corrected, 12 pages, 8 figures, LaTeX, JHEP clas

    Heat kernel, effective action and anomalies in noncommutative theories

    Full text link
    Being motivated by physical applications (as the phi^4 model) we calculate the heat kernel coefficients for generalised Laplacians on the Moyal plane containing both left and right multiplications. We found both star-local and star-nonlocal terms. By using these results we calculate the large mass and strong noncommutativity expansion of the effective action and of the vacuum energy. We also study the axial anomaly in the models with gauge fields acting on fermions from the left and from the right.Comment: 21 pages, v2: references adde

    Wightman function and vacuum densities for a Z_2-symmetric thick brane in AdS spacetime

    Full text link
    Positive frequency Wightman function, vacuum expectation values of the field square and the energy-momentum tensor induced by a Z_{2}-symmetric brane with finite thickness located on (D+1)- dimensional AdS background are evaluated for a massive scalar field with general curvature coupling parameter. For the general case of static plane symmetric interior structure the expectation values in the region outside the brane are presented as the sum of free AdS and brane induced parts. For a conformally coupled massless scalar the brane induced part in the vacuum energy-momentum tensor vanishes. In the limit of strong gravitational fields the brane induced parts are exponentially suppressed for points not too close to the brane boundary. As an application of general results a special model is considered in which the geometry inside the brane is a slice of the Minkowski spacetime orbifolded along the direction perpendicular to the brane. For this model the Wightman function, vacuum expectation values of the field square and the energy-momentum tensor inside the brane are evaluated as well and their behavior is discussed in various asymptotic regions of the parameters. It is shown that for both minimally and conformally coupled scalar fields the interior vacuum forces acting on the brane boundaries tend to decrease the brane thickness.Comment: 25 pages, 6 figures, discussion adde
    • …
    corecore